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We observe dendritic patterns in fluid flow in an anisotropic Hele-Shaw cell and measure the tip
shapes and trajectories of individual dendritic branches under conditions where the pattern growth
appears to be dominated by surface tension anisotropy and also under conditions where kinetic
effects appear dominant. In each case, the tip position depends on a power law in the time, but the
exponent of this power law can vary significantly among flow realizations. Averaging many growth
exponents « yields @ = 0.64 + 0.09 in the surface tension dominated regime and & = 0.66 & 0.09 in
the kinetic regime. Restricting the analysis to realizations when o is very close to 0.6 shows great
regularity across pattern regimes in the coefficient of the temporal dependence of the tip trajectory.

PACS number(s): 68.10.—m, 47.20.Gv, 68.70.4+w, 47.20.Hw

I. INTRODUCTION

The effect of anisotropy on pattern formation, par-
ticularly on viscous fingering, has been studied exten-
sively [1-10]. The presence of the anisotropy, generally
introduced experimentally as a perturbation in the uni-
formity of the cell gap, generates a rich variety of mor-
phologies [1,2,7]. Transitions between morphologies have
been studied and morphology phase diagrams have been
measured [2,4]. The distinction between different mor-
phologies is, however, mainly qualitative (one can clearly
distinguish a faceted from a tip-splitting from a den-
dritic morphology). Still needed are quantitative ways
to identify the morphology of a given pattern and, espe-
cially a quantitative way of describing the morphology
phase transitions. The goal of the experiments reported
herein was to obtain a quantitative signature of the mor-
phologies and to exploit this to describe the transition
between morphologies. We have studied the transition
from dendritic to tip-splitting patterns as the strength
of the anisotropy is tuned down, observing the effects
of the anisotropy vanish as it is made weaker. We were
motivated by work of Almgren et al. [9], who described a
signature of the anisotropy in the fingering patterns (den-
drites) in the form of a scaling of the tip position with
time that was only possible in the presence of anisotropy.
Their analysis introduced observable parameters that can
be used for quantification of the effects of the anisotropy
as we vary our experimental control parameters.

II. EXPERIMENTAL SETUP

Our apparatus consists of a radial Hele-Shaw cell, with
a top glass plate 1 in. thick (to minimize plate flexing
[11]) and 23 in. in diameter. Heavy paraffin oil acted
as the more viscous fluid filling the gap space and dry
nitrogen was injected through the center of the top plate
to generate the patterns. The viscosity of heavy paraffin
oil is 4 = 1.6 P and the oil air surface tension o = 35
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dyn/cm at 22°C. To introduce anisotropy, a plate with
a rectangular array of grooves etched on it was placed
inside the gap, acting as the bottom plate. This etched
plate was a large circuit board (25x50 cm?) with its cop-
per layer photochemically etched to produce the rectan-
gular lattice pattern. The grooves were 0.2 mm wide, 0.4
mm center to center in one direction, and 0.8 mm cen-
ter to center in the other direction, with a depth of 0.07
mm, thus forming rectangular islands of copper, 0.2 x0.6
mm? in size, 0.07 mm in height, and 0.2 mm of spacing
between neighboring edges. Spacers were used to keep
the top and bottom plates at a uniform distance b, thus
setting the cell gap. Measurements were made with gaps
ranging from 0.11 to 1.0 mm. Dry nitrogen was injected
at a constant volumentric injection rate, which translates
into a constant areal injection rate Q if the bubble has a
uniform thickness (close to the cell gap). The developing
fingering patterns were observed with a charge coupled
device video camera and taped on an enhanced S-VHS
recorder. The images were then digitazed and analyzed
with the assistance of image analysis software [12].

III. ANISOTROPIC FINGERING
A. Effect of the anisotropy

It is known [4] that in anisotropic viscous fingering
different morphologies can be obtained and morphol-
ogy phase transitions between them can be observed.
If the anisotropy is introduced through a regular array
of grooves (such as in the present experiments), then
increases in the driving force (injection rate) lead to
changes in steady-state pattern morphology that progress
through faceted, surface tension dendrite, tip-splitting,
and kinetic dendrite regimes. In particular, let us fo-
cus on the two dendritic morphologies: At low veloci-
ties, dendrites grow away from the etched grooves, pre-
sumably because of surface tension effects, that is, the
most favorable configuration is the one that minimizes
the cross sectional area of the interface and that occurs
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away from the grooves. At high velocities, dendrites grow
along grooves, presumably because of kinetic effects, that
is, the most favorable configuration is the one that min-
imizes the impedance to the flow and that occurs along
the grooves, where the gap is larger.

It is a known fact [7,13] (and our observations concur)
that for dendritic patterns to appear, some anisotropy
needs to be present. However, if the strength of this
anisotropy is very low, regular growth based on tip split-
ting will dominate the shape of the patterns. In a theo-
retical analysis, the effect of the anisotropy is introduced
in the pressure boundary condition as

Pls =vf(0)x + Bg(0)vn, (1)

where + is the surface tension, 3 is a kinetic coefficient, 6
is the local angle between the normal to the interface and
the lattice, v, is the local normal velocity, and & is the lo-
cal curvature. The term proportional to v, should dom-
inate at high speeds (kinetic dendrites) while the term
proportional to the curvature should dominate at low ve-
locities (surface tension dendrites). Given that f(#) and
g(0) should reflect the symmetry of the lattice, it is cus-
tomary to use expressions of the kind

f(0) =1 — ecos(mb), (2)
g(6) =1 — x cos(mb + §), (3)

where € and x are the anisotropy parameters, and they
should quantify the effect of the lattice on the patterns,
i.e., they should quantify the strength of the anisotropy.
The phase shift § allows for some competition between
kinetic and static terms in the selection of the direction of
growth (for instance, § ~ 45° seems to be what we would
infer from our experimental observations). We have ob-
served that the morphology of the patterns can be altered
by modification of a = Ab/b, the ratio between the depth
of the grooves to the average cell gap; @, the areal in-
jection rate; and the length scale of the gap modulation,
that is, the length scale of the etched lattice. In our
case, the lattice being rectangular, we will have two such
length scales, one corresponding to each side of the rect-
angles. For instance, we cannot observe any effect of the
etching on the fingering patterns for b > 1.0 mm, that is,
for a < 0.07. For a fixed gap, we can observe the effect of
Q (see Fig. 1). Also on Fig. 1 we can see the influence of

FIG. 1. For a gap b = 0.11 mm, dramatically different
morphologies are observed. Left, @ = 1.3 cm?/s generates
surface-tension-controlled dendrites; center, @ = 1.8 cm?/s
generates a tip-splitting regime; right, @ = 5.5 cm?/s gener-
ates a two-fold symmetric pattern with kinetic dendrites. The
rectangle shows the orientation of the lattice.
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the length scale of the etching when, for a given Q and
b, there is a different behavior along different sides of the
rectangular islands of the etched plate. When the ratio
a = Ab/b between the depth of the grooves (Ab) and the
average cell gap (b) is large enough, and beyond a certain
injection rate, dendritic patterns appear. The underlying
twofold symmetry of the lattice of grooves is reflected at
much longer length scales in a twofold symmetry of the
resulting fingering patterns.

B. Asymptotic scaling

Almgren et al. [9] studied the growth of fingering pat-
terns in the presence of anisotropy by introducing an
anistropy term in the pressure boundary condition

P|s ~ k[1 — ecos(m0)]. (4)

Thus they neglected kinetic effects completely. This is a
simplification of the problem, but might appropriately be
matched with the experiments at low driving force (as-
suming kinetic effects become small and possibly negligi-
ble). They predicted that, in the presence of anisotropy
in the surface tension, the distance from the tip of a
growing (surface-tension) dendrite to the injection point
should scale with time as

Ttip = At3/5. (5)

If z is the coordinate along the axis of a growing dendrite
and y is perpendicular to that axis, then, using simula-
tion, they encounter a scaling behavior

z ~t%, (6)
Yy~ tl—a, (7)

where the fact that the exponents add up to one is a re-
sult of the constraint that the flow has constant injection
rate (either areal or volumetric), so that the area of the
pattern should grow linearly with time,

Ty ~ t, (8)

for any point inside a growing dendrite. This would be
true if the flow is equally distributed among all den-
drites (so that the individual area grows linearly with
time and not only the total area of the multibranched
bubble). This is automatically satisfied in the simula-
tions, but is not always satisfied experimentally. They
predicted that scaling behavior is asymptotic and exper-
iments should observe it only after transients have re-
laxed. At each instant, the dendrite tip has the speed
predicted by steady-state theory. Then, nondimensional-
ization yields the result that the steady-state tip should
have a value for p?V/d, independent of time (it would be
some function of the anisotropy parameter), where p is
the tip radius of curvature, V is the tip velocity, and dg
is the surface tension parameter. Considering the time-
scaling assumption (5) and the constancy of p?V one ar-
rives at o = 3/5. Almgren et al. are also able to find the
asymptotic shape to which the time-rescaled dendrites



3790

Xyip(CM)

1 ——r— y T -
1
time (s)

FIG. 2. Isotropic fingering (smooth plates) case. A fin-
ger that seems to suffer no competition effects, and be-
fore tip-splitting, displays a perfect z:ip = At™ scaling with
a = 0.5. It is, however, hard to find such an example because
it will usually tip split or suffer strong competition before any
sustained scaling regime is attained.

should converge. This curve has a dependence on the
symmetry of the etching and is based on the finger being
isolated (growing unperturbed by the other fingers). The
exponent o, however, will be universal: the same for all
kinds of anisotropy. Following the same arguments, it is
easy to see that in the isotropic case (smooth plates), the
only scaling should be with o = 0.5 (the same for = and
y axes) [8,11]. Moreover, one would need to obtain a fin-
ger that does not change topology (no tip splitting) and
that does not feel a strong competition with the other
fingers (its area should grow linearly with time) in order
to observe such scaling (see Fig. 2).

IV. ANALYSIS OF THE EXPERIMENTAL DATA

To investigate the scaling behavior, we must obtain
dendritic branches whose area grows linearly with time,
that is, dendritic pieces of a larger pattern that are fed
by a constant injection rate. Even though the analysis
in [9] is restricted to surface-tension-controlled dendrites,
we extend the analysis to kinetic-controlled dendrites as
well. We have observed power-law behavior of the tip po-
sition in both regimes. Our analysis proceeds as follows.
(i) For a dendrite in a given run, we examine succesive
frames (up to 30 frames/s) and for each frame obtain its
contour shape, from which we can measure the area and
the tip position. This yields a time series for the area and
the tip position. (ii) From the time series of the tip posi-
tion, we obtain the time series for the distance from the
tip to the injection point z;, and try to fit to xy;p = AL,
Sometimes, it is required to allow a small time shift ¢ to
be fitted, due to a small uncertainty on the starting time
for the flow, possibly including a transient time for the
asymptotic flow to set up. We always require this time
shift to be small, as compared to the time it takes the
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pattern to evolve. Also, we usually discard some of the
first few frames, wherein shapes might be dominated by
the transient. As noted above, the analysis in [9] predicts
o = 3/5 in the presence of anisotropy, for surface-tension
dendrites. We have observed that values of a different
from 3/5 fit our data better under a variety of condi-
tions. It is plausible that the extension of the analysis to
the kinetic regime may lead to other values for a.

For four-fold symmetry (case studied in [9]) the value
of A as a function of € has been computed analytically
[14]. In our case, with two-fold symmetry and no reliable
procedure to relate our experimental parameters with the
anisotropy parameter € that the theoretical treatment
deals with, we must look for empirical regularity. With
this parameter A and the value of @ both measured ex-
perimentally, we check whether our patterns conform to
the universal asymptotic curves found in [9]. In gen-
eral, there is a dispersion in the values of «, so patterns
corresponding to the same morphology generate values
of a that can be quite different. In the surface-tension-
controlled regime, the analysis of 45 branches for sev-
eral different gaps yields an average @ = 0.64 with a
large standard deviation o, = 0.098. The analysis of 29
kinetic-controlled branches yields an average @ = 0.66
with a standard deviation o, = 0.096. Therefore, we
can see no significant difference between the values of
a in both regimes. A generalized trend is for the value
of a to be larger than 0.5 (the one expected in the ab-
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FIG. 3. Digitized patterns (top) and fit of tip position to
t* for the fastest growing branch (bottom) corresponding to
a surface tension dendrite. That branch grows away from the
grooves (at an angle of approximately 45°) and has a pointed
tip (no tip splitting). The rectangle represents the orientation
of the etching. The gap is b ~ 0.3 mm and the injection rate is
Q = 1.14 cm?®/s. The t* scaling behavior (with a = 0.59+0.07
and A = 0.80 =+ 0.02) is observed after a short transient and
no time shift parameter is required for the fit.
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sence of anisotropy) and, in the case of surface-tension-
controlled flow, consistent with the predicted value of
0.6. In Fig. 3 a run that generates a surface-tension den-
drite is shown and the scaling exponent has a value in
agreement with the expected 0.6. For this particular run,
the rescaled shape does not conform with the asymptotic
shapes found in [9], probably because of some interaction
with the rest of the bubble, far behind the tip. The fact
that the scaling of the tip position is so clear, however,
can be interpreted as a sign that the selected velocity
is only affected by what happens in the neighborhood
of the tip and not on the full shape. Figure 4 shows
a run in the kinetic-controlled regime, where dendritic
branches follow the grooves. The dominant branch is
analyzed and yields a value for o larger than 0.6. Us-
ing the value of @ for the whole bubble, we compare
the rescaled data with the predicted asymptotic shape
in the case of two-fold and four-fold symmetry. We no-
tice that the two-fold shape adjusts better to our data

D Finger 1
<— %

o -

FIG. 4. Digitized patterns (top) and comparison of the
rescaled shape with the predicted asymptotic curves for (a)
twofold and (b) fourfold symmetry. The rectangle represents
the orientation of the pattern. The gap is b=0.3 mm and
the injection rate is Q = 19.6 cm?/s. Note that while den-
drites are observed along the short side of the rectangles, the
long side still exhibits tip splitting. In the fit to the tip po-
sition, only the region where the area grows linearly with
time has been used. This run coresponds to kinetic den-
drites and the scaling of the tip position fits to the power
law with a = 0.64 £+ 0.02 and A = 6.9 = 0.2. A time offset of
0.3 s is required by this fit. Once A is found, the measured
Q for the full pattern is used to scale the universal curve
(y/tl_a ~ % Yuniversal m/ta ~ Azuniversal)- No other ad-
justments are made. Note that the rescaled empirical shapes
at different times superimpose far behind the tips. The (a)
two-fold asymptotic shape seems to adjust better than the (b)
fourfold to these twofold data.
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(see Fig. 4), which is what we would expect from having
rectangular symmetry in the etching. Since the analysis
that yields the theoretical expression for the asymptotic
shapes relies on the symmetry of the problem, it may be
reasonable that the same expressions could be used for
surface-tension-controlled and for kinetic-controlled den-
drites. Some preliminary arguments by Almgren [15] lead
to the conclusion that a value a = 2/3 is what should be
found in the kinetic controlled regime, regardless of the
symmetry of the anisotropy.

A. Quantitative analysis: Parameter A

Once convinced that our data were consistent with the
predicted features of the anisotropic patterns, namely,
the scaling as t® of the tip position, we proceeded to
study the evolution of A as the different experimental
parameters that affect the patterns were varied. Our in-
tention was to observe any available signature of a tran-
sition between the different morphologies or at least be-
tween anisotropic patterns and isotropic patterns. For
each run, the pattern evolution of each of the dendrite
branches obtained (up to 4 for high Q) was analyzed
independently. The flow was not in general distributed
uniformly among the different growing branches so the
area of each branch within the same run would grow at a
different rate. For this reason, we used the rate of growth
of the area for each branch Q as the relevant parameter
instead of the global injection rate for the run. Doing
this allowed us to obtain one independent value for A
and one for a for each of the branches, up to four inde-
pendent values for each flow realization. With this, we
obtain a series of pairs (o, A) as a function of our control
parameters (b, Q).

Most of the values for a we obtain are scattered around
a = 0.6. Our analysis concentrates on the dendrites that
scale with o = 0.6 (within experimental uncertainty; see
the caption of Fig. 6 for more quantitative details). When
we plot A vs Q, keeping the gap b fixed, we see the data
align in a simple pattern that we can roughly describe
with a power law: A ~ QP (see Fig. 5). An even more
striking result is that, if we put together in the same
graph the data obtained from different gaps, they seem
to superimpose, showing an apparent independence on
the gap (see Fig. 6).

Karma has pointed out to us that the dependence of
A on Q at fixed b can be easily understood with some
dimensional analysis [16] as follows: The equations of
viscous flow in a radial Hele-Shaw cell can be made di-
mensionless by a suitable choice of units. Since the four-
dimensional parameters of the experiment — @, b, 1 and
o — can be combined to produce the dimensionless quan-
tity uQ/ob, there is freedom in the way we nondimension-
alize. A customary choice of units is Py = pQ/b? for pres-
sure, Lo = b%0/(Qpu) for length, and To = b*0?/(1?Q?)
for time. Since p (viscosity) and o (surface tension) re-
main unchanged, we just need to focus on the dependence
on Q and b. The above mentioned choice of units, namely,
Py~ Q, Lo~ QL and Tp ~ Q7 3, effectively removes
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Q (cm2/s)

FIG. 5. Dependence of A (solid squares) on Q for a ~ 0.6
at three different values of the gap b. No distinction has
been made between surface tension and kinetic dendrites, so
branches from both regimes are present on the same graph.
Note a regime of Q values where there are no data. That
regime connects surface tension dendrites (low Q) with kinetic
dendrites (high Q) and there tip-splitting dominates the dy-
namics. The exponent of the power law is the following: top,
B = 0.74 £ 0.01; middle, 8 = 0.70 £ 0.02; bottom, 8 = 0.77
+ 0.03; open circles are the values of a for each case. The
analysis presented in the text predicts a value 8 = 0.8.
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FIG. 6. A (solid symbols) vs Q with a ~ 0.6. The open cir-
cles are the values of a for each case. The two groups of data
points correspond to surface tension dendrites (low Q) and ki-
netic dendrites (high Q). Gaps range from b = 0.011 cm up to
b=0.037 cm. In the surface tension regime & = 0.62+0.02 (24
points) and in the kinetic regime & = 0.61 £ 0.04 (32 points).
The combined statistics are & = 0.61 + 0.03 (56 points). The
fit to a power law yields an exponent 8 = 0.71 &+ 0.01.

all dependence on @ from the equations. With this, the
dimensionless pressure (p'), time ('), and tip position
(z') are expressed: = ~ z'/Q, t ~ t'/Q3, and p ~ Qp'.
Then, if we assume a scaling behavior ' ~ A't'* (now
A’ is independent of Q, since Q is no longer present in
the equations), the dimensional variables will verify

T~ :E,/Q ~ Altla/Q ~ A,(tQ3)a/Q — A/Qaa—lta' (9)

Now, if a ~ 0.6 then we expect A ~ Q°8. Even though
the above expressions have been derived using @, the to-
tal injection rate, it is not unreasonable that, if a branch
grows independently of the rest, being fed by a constant
Q, the same expressions should hold with @ instead of Q.
That is what we check experimentally. This power-law
behavior can be used as a proof for the self-consistency of
the scaling of the tip position with time because it relies
on two parameters (A and Q) that are measured by two
experimentally independent methods.

Even though we found experimentally the surprising
result that we can mix data from different gaps and yet
obtain the same behavior (see Fig. 6), we can explore
what dependence would A have on b by including b in the
former analysis. If we include b, then the characteristic
units of the problem go as Py ~ Q/b2%, Ly ~ b2/Q, and
To ~ b*/Q3. Once more, assuming =’ ~ A't'* we will
have

3\ & 2
T = JflLo ~ LOAI (%) ~ A'%t“Qsab_4a
— AIQ3a—1b2(1—2a)ta. (10)

So the expected behavior is A ~ A'Q3a—1p2(1-22) |f
a ~ 0.6 this becomes A ~ A'Q%%b~%* or, in a more
compact way,

Again, this should hold with Q instead of Q for an in-
dividual branch. This has been tested on Fig. 7. We

LR LA B B e e 8 1 T T TTrTr
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Q ~b

FIG. 7. A vs Q//b for b = 0.11 mm, b = 0.22 mm, and
b = 0.37 mm combined. The fit to a power law yields an
exponent 8 = 0.73 £ 0.01.
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see how in the range of b we used (from 0.011 cm up
to 0.037 cm) the final result is not very much affected by
the introduction of this dependence on b, even though we
believe this last expression allows us to more confidently
compare results obtained with different cell gaps.

V. SUMMARY AND CONCLUSIONS

Our experiments exhibit an asymptotic scaling of the
tip position of a growing dendrite in viscous fingering
in the presence of anisotropy. We have observed this
scaling in both surface-tension-controlled and kinetic-
controlled dendrites. Our analysis has independently ex-
tracted three parameters from our experimental data: A,
the prefactor in the scaling of the tip position; Q, the
rate of growth of the area of the dendrite branch; and
a, the time exponent of the dendrite tip growth. While
the theoretical results predict a single value of & = 0.6
in the presence of static anisotropy and our individual
measurements are frequently compatible with this value,

we observe significant dispersion among the exponents
observed in repeated flow realizations, yielding an aver-
aged value of @ = 0.64 + 0.09. For kinetic dendrites,
a = 0.66 & 0.09. When we restrict our analysis to the
flow realizations where o = 0.6 (& = 0.61 + 0.03), we
experimentally recover the relationship between A and
Q that the scaling of the tip position would impose (9)
and (10). Thus far, the relatively large dispersion of «
under conditions where the pattern was of unambiguous
morphology has prevented us from meaningful comment
on the quantification of the data in the morphology tran-
sition zones.
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